
Destructive disassembly to support virtual prototyping

KYONGHUN LEE and RAJIT GADH

Department of Mechanical Engineering, The University of Wisconsin-Madison, 1513 University Ave., Madison, WI 53706, USA

Received November 1995 and accepted September 1996

The design paradigm called virtual prototyping (VP) is important because of the need to manufacture products in a short period of
time and in a cost e�ective manner. By replacing the building of physical prototypes for testing various design issues such as
usability, life-cycle analysis, functionality and so on with so called ``virtual models'' on a computer and analyzing them, virtual
prototyping is achieved. One of the design issues that has become increasingly important is the ``design-for-disassembly (DFD)''
paradigm. A well designed product that is easy to disassemble has the obvious advantages when it needs to be taken apart for
service or end-of-life recycling. Therefore a design tool that can tie the DFD issues into a virtual prototyping system is of
considerable interest. This paper attempts to address this particular issue in the virtual prototyping area: DFD as applied to VP.
This paper presents an overview of a detailed DFD method. An algorithm that can be readily tied into a computer aided design
system, therefore also useful for virtual prototyping, is discussed. Some implementation issues and an evaluation of the e�ec-
tiveness of the DFD method currently employed are explained. Even though this research is still in its early stages, the paper
presents a general framework of DFD methodology and its potential to be used as a virtual prototyping tool.

1. Introduction

The objective of the current research can be summarized
as follows: to help design engineers make better design
decisions regarding disassembly while still in the product
development stage through the use of computer-aided-
design (CAD) tools as part of the broad virtual proto-
typing paradigm.

Most research in design for disassembly (DFD) has
been performed at the conceptual level. Conceptual DFD
is usually based on a knowledge database where pre-
stored design rules are applied to certain classes of
assemblies. In this paper, an alternativemethod, geometry-
based disassembly, is presented. Based on the shapes of
objects, the current approach to disassembly is a detailed
application-level method of disassembling a broad range
of multiple-part assemblies. It not only provides
disassemblability information of assemblies but also de-
tailed solutions as to how the assembly can be disas-
sembled. Also, unlike traditional DFD research, this
method allows modi®cations to the geometry of the as-
semblies, giving the disassembly algorithm added ¯exi-
bility, and a wider range of application. In addition, the
automatic disassembly technique proposed in this paper
can be readily incorporated into an existing virtual
prototyping environment or CAD system to provide the
system users with tools with which various ``what-if ''
analysis concerning disassemblability of a product can be
conducted. The disassembly method involving the modi-

®cation of the geometry of parts is called a ``destructive
disassembly (DD) method.''
Two main types of disassembly techniques can be

de®ned according to whether the components of an as-
sembly or only the material of the components are to be
saved. One technique is non-destructive disassembly (N-
DD) [1], where all components of an assembly are kept
intact during disassembly. The other is destructive dis-
assembly (DD), where the geometry of one or more parts
is modi®ed during disassembly due to the cutting opera-
tions. DD is usually employed when N-DD is not possi-
ble or when only the raw materials of the components
need to be recycled. The current research investigates
approaches to this DD method.

2. Research objectives

With the current geometric DD approach, the following
objectives have been achieved:

(1) An application-level, detailed disassembly method
is established. Most of the currently available disassembly
methods are so-called ``conceptual design'' methods,
based on the knowledge database approach. Various
design rules are stored in a database and are called upon
for a certain class of assemblies. However, due to the
limitations of the knowledge base, these methods may not
provide enough information for the actual disassembly

0740-817X Ó 1998 ``IIE''

IIE Transactions (1998) 30, 959±972



operation. For example, a conceptual disassembly method
may specify that a certain fastener be removed, but the
knowledge database does not specify whether or not
the fastener is removable nor the direction of removal.
The current method presents an algorithm that is based
on detailed geometry. By analyzing the physical inter-
actions among components in an assembly, the method
is able to specify for each component whether it is
removable and, if so, in what direction.

(2) A method applicable to a wide range of mechanical
assemblies is developed. Since the current disassembly
method is based on the geometry of the parts itself, a
knowledge-base is no longer necessary. All interactions
between parts are analyzed by the shapes of the objects
alone, making this method applicable to a broader range
of assemblies. Furthermore, the current disassembly
method allows for the modi®cation of the geometry of the
components in an assembly, thus increases the number of
parts that can be disassembled and increases disassem-
blability. Some components that would otherwise not be
disassemblable through N-DD may be physically altered
through cutting and so disassembled.

3. Related research

Ishii [2] has introduced a life-cycle design methodology
called ``clumping.'' Clumping refers to a collection of
components and/or subassemblies that share a physical
relationship and some common characteristic based upon
user intent. Ishii maintains that clumping can be used to
achieve increased product retirement values such as reuse,
recycling, and disposal by treating similar subassemblies
of a design as one unit and calculating the cost of re-
moving or accessing this unit or ``clump'' from the rest of
the assembly.

Woo [3] has generated a sequence of motions for re-
moving components in a three-dimensional assembly one
at a time. He strictly uses only the translation motion of a
robot. Sedas and Talukdar [4] have generated plans for
disassembling speci®c mechanical objects. The plans are
produced by a set of knowledge-base sources acting on a
set of representations for the object. Subramani and
Dewhurst [5] have investigated procedures which can
be used to assess service di�culties and cost early in
the product design process. Central to their work is
the generation of required disassembly sequences for the
identi®ed service or items. All three of these papers focus
on generating either motion or assembly sequences, for
removing components of an assembly. This method
assumes, however, that the components are readily
removable.

Mattikalli and Khosla [6] have determined constraints
on the translation and rotational motion of planar and
3-D objects from their contact geometry. The geometric

realization makes it easier to visualize results, provides a
measure of the extent of restraints between objects, re-
duces computational requirements by eliminating redun-
dant constraints, and simpli®es computation of net
constraints. In a later paper, Xu, Mattikalli and
Khosla [7] determined the disassembly motion plans of a
subassembly in the free space within its parent subas-
sembly. The focus is on the generation of a partial medial
axis for disassembly motion planning.
Another relevant research e�ort is the non-destructive

approach to DFD by Ashai and Gadh [1]. This approach
uses an algorithm to determine the disassembly directions
of a multiple-component assembly, i.e., the directions in
which each component part of the assembly can be re-
moved without any obstruction during the disassembly
process. This algorithm can be used in conjunction with
the DD algorithm discussed in this paper to determine
whether a part can be disassembled without the destruc-
tive method. Because this algorithm is rather closely re-
lated to the current research, it will be discussed in more
detail later.
In addition to disassembly techniques involving linear,

single translation motion, many detailed studies have
been performed on complex motion planning to support
the removal of one component from another. Dutta and
Woo [8] have studied the application of motion planning
to disassembly. However, motion-planning as applied to
DFD is still a new research area and relatively little re-
search has been performed. By combining some of these
complex motion planning methods into the current geo-
metric interaction-based DD algorithm, even greater
¯exibility in the disassembly may be achieved.
It should be noted that Boothroyd, the creator of the

procedure-based DFA analysis technique [9] has recently
acknowledged the importance of DFD [10].
The above research has clearly shown the importance

of the design-for-disassembly paradigm. A considerable
amount of research has been conducted in areas con-
cerning product disassembly, such as knowledge-base and
life-cycle cost analysis. However, little research e�ort is
currently based on geometric DD, a gap which the cur-
rent research will endeavor to ®ll. The advantage of this
approach is that the geometric algorithm can be generic,
and once established, can be applied to a wide range of
products. A knowledge-based approach, on the other
hand, may only be applied to those products for which
the knowledge-base is initially designed. Knowledge-
based approaches, however, usually yield more optimal
solutions because proven rules are used to help designers
discard the most obviously wasteful design choices.
Therefore, a hybrid of the geometric approach and the
knowledge based methods may ultimately provide the
best results in designing for disassembly. This avenue of
research will be further pursued by the authors in their
future work.

960 Lee and Gadh



4. Background: N-DD algorithm and de®nitions

The DD method is employed when the disassembly of a
part in a non-destructive fashion is not possible. If the N-
DD algorithm determines that a given assembly cannot
be disassembled without destroying at least some of its
components, the destructive algorithm will be used to
further disassemble the part. In the current research, an
N-DD algorithm, developed by Ashai and Gadh [1] at the
University of Wisconsin-Madison, is used for this test.
The remainder of this section will discuss the N-DD
method, provide some de®nitions of terms used through
the text and illustrate some important properties of the
N-DD. A detailed explanation of the DD algorithm will
appear in Section 5. Most of the issues discussed in this
section are also of importance in the DD method. For
simplicity, most examples are shown in two-dimensional
space.

4.1. The N-DD method in general

The N-DD approach utilizes a direction-based method to
disassemble components. The core of this algorithm in-
volves determining if the components of an assembly can
be disassembled via a linear translation motion. Due to
the added complexity of other motions, such as rotation
or a combination of both rotation and translation mo-
tions, only the linear translation motion is considered.
Furthermore, once the non-linear motion is introduced in
this problem, new complex concepts such as robotic
motion planning in 3D-space have to be considered.
These are not only very complex issues but are also be-
yond the scope of the current paper.

In the current approach, the directions in which the
individual components can be removed or ``disassem-
bled'' are ®rst determined. If a direction of removal or
``disassembly direction'' cannot be found for a compo-
nent in an assembly, then it is at least partially not
disassemblable. This analysis is called the ``removability
analysis of a component.'' The purpose of the remov-
ability analysis is to ®nd and remove the components
from an assembly that can be removed without modi®-
cations to their geometry. An assembly may consist of
several sub-assemblies or components, one or more of
which can be removed in this manner. After the compo-
nents for which removal directions are determined by the
N-DD algorithm are disassembled, the remainder of the
assembly, if any, is further disassembled using the DD
method. Then, due to a change in the geometry caused by
the cutting method, a new set of possible solutions is
created. The assembly is then tested further for disas-
sembly recursively using NDD and DD methods until the
desired level of disassembly is achieved.

4.2. De®nition of terms and properties

In the N-DD approach, one component at a time is dis-
assembled from the assembly and the rest of the assembly
is treated as a single component. For example, consider
an assembly with three components (C1, C2 and C3), as
shown in Fig. 1. If C1 is to be disassembled ®rst, the rest
of the components (C2 and C3) are treated as one object
(residual component group ± (RCG); shaded area). N-
DD is performed on C1 by determining possible ``disas-
sembly directions,'' that is the directions in which C1 may
be moved to be disassembled. If a disassembly direction is
found, C1 is removed from the RCG. Subsequently, an-
other individual component, perhaps C2, from the RCG
is selected for removal, and the rest (C3) becomes a new
RCG. This disassembly analysis is then repeated until
there are no more components to disassemble or until
further N-DD is no longer possible.
To disassemble one component from the RCG using

this method, the ``interacting surfaces'' (IS) between the
two components must ®rst be determined. IS are those
surfaces which restrict the directions along which the two
components can be disassembled. As shown in Fig. 2, IS
always ``interact'' in pairs. One IS is on the component
that is to be removed ®rst (C1, in this case) and the other
IS is on the RCG. An asterisk(�) is used to denote the IS
belonging to the RCG (IS�). This IS/IS� pair forms a ``set
of interacting surfaces'' (SIS). Figure 3 shows all SIS for
the example assembly shown in Fig. 1. A SIS restricts the
relative motion of a component with respect to another
``set of possible directions of separation'' (SDS).
In this paper, an SDS is represented with a ``Gaussian

sphere.'' This Gaussian sphere (GS) has been previously
reported in the literature [11] as a method to denote al-
lowable directions of movement of an object in three-
dimensional space. The GS originates from the fact that a
sphere can be found by connecting the tips of all allow-
able direction vectors in a 3-D space along which an
object can be moved (Fig. 4a). Therefore, if an object,

Fig. 1. A multiple component part con®gured into two groups.

Destructive disassembly to support virtual prototyping 961



such as a cube, can be moved freely in a 3-D space, its
``disassembly direction'' can be represented with a full
sphere. Assume, however, that there is a ¯at surface un-
derneath the cube as is shown in Fig. 4b. The IS between
the cube and the surface form a SIS. Due to this SIS, the
directions along which the object can be moved are re-
stricted and are represented with a closed hemisphere
rather than a full sphere. In this case, this hemisphere
represents the SDS of the cube due to the IS it shares with
the ¯at surface. In general, the SDS for a planar IS is
always a closed hemisphere. Figure 5 shows the resultant
SDS� of component C1 with respect to RCG due to IS1�.
Notice that the SDS here is labeled with an asterisk be-
cause it is due to an IS�, which belongs to the RCG. This
notation convention is used throughout this paper. Ac-
cordingly, the SDS of RCG with respect to C1 due to IS is
simply SDS (not shown in the ®gure). Figure 6 shows all

resultant SDS of C1-fSDS1�, SDS2�, SDS3�g-with respect
to RCG due to IS1�, IS2�, and IS3�. The resultant SDS of
RCG-fSDS1, SDS2, SDS3g-with respect to C1 due to IS1,
IS2, and IS3 respectively are then the mirror images of
their corresponding counterparts.
The aggregate set of directions along which a compo-

nent can be removed from RCG is called the ``set of
directions of removal (SDR)''. The SDR of a component
is found by performing an intersection operation of all
SDS of that component resulting from the SIS that the
component shares with the RCG. The intersection oper-
ation is performed by aligning the origins of the SDS
found and then performing an ``AND (\)'' Boolean op-
eration on them. Figure 7 shows the intersection opera-
tions of SDS1�, SDS2�, and SDS3�, and the resultant SDR
of C1 (SDR1).

4.3. Notation convention

To summarize, a symbolic notation of all the above terms
follows. This notation scheme is used throughout the
paper:

(1) There are N components in an assembly. They are
denoted as Ci where i � 1; 2; . . . ;N .

Fig. 2. Interacting surfaces (IS) between two components.

Fig. 3. Sets of interacting surfaces (SIS) between two compo-
nents.

Fig. 4. Representation of SDS using Gaussian sphere.

Fig. 5. Resultant SDS due to IS.

962 Lee and Gadh



(2) Between any two components, there are M number
of SIS. In the current research, SIS refers speci®cally to
the SIS between the component that is to be removed ®rst
and the RCG. They are denoted as SISj where
j � 1; 2; . . . ;M . Also, for convenience, this numbering
scheme re¯ects the topological relationship between the
IS. Any two sequentially numbered SIS share an edge
between them. For example, the ISj in SISj is adjacent to
ISj�1 and ISjÿ1. Notice that this numbering scheme only
works in a two-dimensional space. In a three-dimensional
space there may be more than two adjacent surfaces to a
particular face. Here, an additional data structure that

keeps track of the topological information of the compo-
nents is necessary. This numbering scheme is useful in ex-
plaining the DD algorithm presented later in this paper.
(3) There are two IS for each SISj. As mentioned ear-

lier, the IS in an SISj that belongs to the ®rst component
to be removed is ISj and its counterpart belonging to
RCG is ISj�. Also, it is worth noting that due to the initial
grouping of several components into RCG, an ISj or ISj�
of the corresponding SISj can consist of more than one
actual IS. Consider the example assembly shown in
Fig. 6. The IS2� from SIS2 consists of an IS from C2 and
an IS from C3. In the current research, however, these
distinctions are not made. There are simply two IS in an
SIS with which the SDS are derived.
(4) An SDS due to a particular IS is labeled using the

notation conventions for that IS. For example, an SDS
due to an ISj/ISj� of an SISj is SDSj/SDSj�.
(5) An SDR, representing the ®nal resultant removal

directions of a component, is labeled according to the
component numbering scheme. For example, the resul-
tant SDR of component C1 is labeled as SDR1. Accord-
ingly, a given SDR is denoted as SDRi, where
i � 1; 2; . . . ;N .

Also, the intersection operation with which the SDR is
found is represented as: SDRi � SDS1 \ SDS2 \ � � � \
SDSM . From the example in Fig. 7, the SDR of C1 from
RCG can be represented as: SDR1 � SDS1� \ SDS2� \
SDS3�.
To summarize, non-destructive disassembly (N-DD) is

achieved through the use of Gaussian sphere to determine
possible directions of removal (SDR) of one component
at a time from an assembly.

5. The DD algorithm

5.1. Overview

In the remainder of this paper, a DD method based on
the geometry of the components of an assembly is pre-
sented. Similar to the N-DD method presented earlier,
one or more solutions for DD are systematically found
solely using the surface interactions of the 3-D parts. The
speci®cs, including a walk-through of the algorithm of
this geometry-based approach, is presented in Section 5.2.
Then the complexity of the algorithm is discussed in
Section 5.3.
As will be discussed in detail at a later point, due to

added ¯exibility of the destruction of a part, the DD al-
gorithm usually produces a large number of disassembly
solutions for a given problem. To narrow down the de-
sign choices, the DD algorithm utilizes certain heuristic
rules. This in e�ect takes advantage of the inherently
optimized solutions that the previously mentioned
knowledge-base, non-geometric disassembly algorithms
usually produce. Typical knowledge-base rules analyze

Fig. 6. Sets of directions of separation (SDS) of C1 with respect
to RCG.

Fig. 7. Resultant set of direction of removal (SDR) for com-
ponent C1.

Destructive disassembly to support virtual prototyping 963



issues such as labor/material cost, time consumed while
performing disassembly, etc. and produce design sugges-
tions for a speci®c class of assemblies which, due to the
speci®c nature of the rules involved, tend to be more
optimized than strictly geometric ones. By using some of
the optimization rules in strategic places within the al-
gorithm more meaningful solutions can be achieved
without losing the inherent ¯exibility and generic nature
of the geometric approach.

The heuristics are mainly based on the geometry of the
components. The rules employed in the current DD ap-
proach are mainly designed to help decrease the number
of choices that the DD algorithm has to make while
performing a disassembly. For example, a typical rule
would be the minimization of the amount of destruction
required for a given disassembly. Here, this amounts to
minimizing the number of cuts during destructive disas-
sembly of a component.

There are many equally valid rules for a given disas-
sembly scenario and some of them are explored more in
detail in Section 5.2. However, in the implementation and
testing stage of the current research, for simplicity, only
one simple rule is used for optimization: the algorithm will
favor DD solutions where the minimum number of cuts
on the components are required. However, practically this
may not be the best possible disassembly solution. Instead
of minimizing the number of destructive cuts, the size of
cutting surfaces can be reduced and this may lead to a
preferred (more economical) solution for a given part and
for a given design requirement. However, after consulting
various industrial partners, such as engineers at IBM and
Motorola, the proposed method of reducing the number
of cuts required is a very reasonable one which achieves
many desirable disassembly goals such as reduced labor
and greater re-usability of parts. Therefore, the current
approach will be su�cient to demonstrate the overall
framework of the proposed DD design methodology. In
future implementations, a combination of similar rules
can be adopted for even better results.

5.1.1. Assumptions

Due to the nature of DD, the scope of issues concerning
the entire disassembly is rather large. It can be ap-
proached from many di�erent angles; some issues are
more important than others. Therefore, an attempt has
been made to focus the current research solely on the
detailed geometric DD approach. Listed below are sev-
eral simpli®cations and assumptions that have been made
in the current research:

Assumption 1: The IS/IS� pair in an SIS always touch each
other.

Earlier, terms such as SIS and IS were de®ned. In reality,
there are two types of IS: the ``touching'' IS (TIS) and the
``non-touching'' IS (NTIS). The TIS refers to those IS

that restrict the directions of removal by touching each
other. In other words, if the ISj is in contact with ISj� in
an SISj , the SISj is called a ``set of touching interacting
surfaces'' (STIS). The IS within STIS are labeled TISj and
TISj�, as is shown in Fig. 8. All other conventions for IS
apply to TIS. It is important to note that, surfaces do not
have to touch each other to restrict the disassembly mo-
tion (Fig. 9). The IS of a SIS that do not touch each other
are called NTISj and NTISj�. Figure 10 shows an ex-
ample of a geometric con®guration where only points,
rather than surfaces, restrict the disassembly directions of
the components. Analogous to the surface de®nitions, a
pair of interacting points (IP and IP�) make up a set of
interacting points (SIP) with touching and non-touching
interacting points (TIP and NTIP). Neither the NTIS nor
IP is considered in the current DD algorithm.

Assumption 2: Only a single, linear translation disassembly
motion is utilized for disassembly.

The current DD method does not properly recognize
assemblies that may be disassembled via a combination of
more than one translation or rotation motion. For ex-
ample, the assembly in Fig. 9 may be intuitively disas-

Fig. 8. Touching interacting surfaces (TIS).

Fig. 9. Non-touching interacting surfaces (NTIS).

964 Lee and Gadh



sembled using a combination of one rotation and one
translation motion as is shown in Fig. 11. Even though
this may seem simple on the intuitive level, quite complex
motion planning algorithms such as those by Dutta and
Woo [8] are required to implement this type of multiple-
motion disassembly and it is therefore beyond the scope
of the current research. Once implemented, however, the
motion planning can be used to overcome the limitations
described in Assumption 1. Solutions can be found even
for assemblies such as that in Fig. 9. Basically, the motion
planning will bene®t the N-DD part of the disassembly
algorithm more than the DD part simply because in DD,
disassembly directions are usually arti®cially created by
modifying the con®guration of components and thus it is
easier just to create a disassembly path that is linear.

Assumption 3: The only method of ``destruction'' of com-
ponents in an assembly is a planar cut.

The planar cutting method has been chosen as the
method of destruction due to its simplicity and popularity

in real industries. Even though a non-linear cutting path
can be created using laser cutting, a simple straight saw or
a cutter are by far the most commonly used tools. Also,
since the algorithm itself depends on ¯at and faceted
touching surfaces only, a planar cut is a reasonable choice
for the initial stage of the research.

Assumption 4: The frictional and other strain/stress forces
acting on the IS are disregarded.

Similar to Assumption 2, incorporating these materials-
related properties of the components requires in-depth
investigations into such diverse ®elds as ®nite element
analysis (FEM) or Statics and therefore is not considered
in this paper. If implemented eventually, this may become
a very powerful DFD tool, nonetheless.

5.1.2. Overall DD approach

The overall approach of the current DD research is based
on the following information: typically, there are a
number of STIS between a component and the RCG in
an assembly. Each STIS restricts the disassembly motion
of a component from the RCG to a set of speci®c di-
rections, also denoted as SDS. Often, there are a number
of STIS between a component and the RCG such that
they restrict completely the disassembly motions of the
component. For example, consider the assembly shown in
Fig. 12. This assembly is similar to the example assembly
in Fig. 7 except for the addition of an extra pair of TIS4/
TIS4� (or STIS4). The SDS4� of component C1, that re-
sults from TIS4� of the STIS4 , has no direction in com-
mon with the resultant SDR1 obtained by intersecting
SDS1� , SDS2�, and SDS3�, as found earlier in Fig. 7.
Symbolically, SDR1�SDS1�\ SDS2�\ SDS3� \ SDS4� �
NULL. This implies that this assembly cannot be disas-
sembled through the N-DD method. For such assemblies
where N-DD is not possible, the DD algorithm accom-
plishes the disassembly by eliminating one or more TIS
(therefore eliminating the corresponding SDS) through
cutting o� (``destroying'') parts of the component to
which the TIS belongs, such that the rest of the assembly

Fig. 10. Interacting points (IP).

Fig. 11. Combination of translation and rotation disassembly
motion.

Fig. 12. Example of an assembly that cannot be disassembled
in a non-destructive fashion.

Destructive disassembly to support virtual prototyping 965



can be disassembled through the N-DD method. From
SDR1 � SDS1� \ SDS2� \ SDS3� \ SDS4� � NULL it
can be concluded that, if the SDS4� is eliminated, the
SDR1 is no longer NULL and therefore C1 can be dis-
assembled from the RCG.

To eliminate SDS4�, the corresponding TIS, the TIS4,
may be removed from C1 through cutting. This modi®es
the assembly to a new assembly that is geometrically id-
entical to the one shown in Fig. 1. Since the assembly in
Fig. 1 is found to be non-destructively disassemblable,
this removal of the surface TIS4 from C1 is one of the DD
solutions for the assembly in Fig. 12. The detailed
methodology presented in the next section is based on this
concept.

5.2. Detailed DD algorithm

The last example from Fig.12 illustrated the core of the
DD method: determining the disassembly of a multiple-
component assembly. In this section, the algorithm, which
consists of seven recursive steps, is outlined. The algo-
rithm will take a multiple-component assembly, analyze it
for possible STISj, and decide which among the corre-
sponding TIS should be removed to facilitate the disas-
sembly. Then the TIS is removed through cutting, and the
algorithm is recursively applied to the modi®ed assembly.
This process is repeated until all components are disas-
sembled. A ¯owchart outlining the DD method in seven
main steps is shown in Fig. 13. Each step in the chart is
explained in detail in the remainder of this section.

The following is a walk-through of this algorithm using
an example assembly (Fig. 14). According to the notation
developed earlier, the TIS1 through to TIS7 shown in the
®gure all belong to component C1. The corresponding
TIS* (TIS1�±TIS7�) belonging to component C2 (the
RCG, this case) are not shown for clarity. The N-DD
algorithm will identify this assembly as non-disassembl-
able. Either C1 or C2 has to be cut to make the disas-
sembly possible.

5.2.1. Disassembly step 1. Non-destructively disassemble
the given multiple-component assembly until it is no longer
possible

This ®rst step ensures that the DD algorithm is only
applied to assemblies that cannot be disassembled non-
destructively. If only a single component is left after the
application of the N-DD algorithm, the disassembly is
complete. Otherwise Steps 2 through 7 are necessary.

5.2.2. Disassembly step 2. Identify the ®rst component
for disassembly

In this step, an assembly is grouped into two entities: The
component to be disassembled ®rst and the RCG. There
are three di�erent ways that this step can be performed:
(1) the computer chooses a random component; (2) the
user picks a component (maybe using a pointing device to

point and click on a component displayed on the com-
puter screen); (3) a pre-stored set of rules helps decide
which component to disassemble ®rst. Therefore this is
the ®rst place where an optimization can occur using
heuristic rules as described earlier in this text. For ex-
ample, one heuristic could require that the component
selected be accessible from the exterior of the assembly,
for making the cuts. Therefore, one heuristic rule for
approach (3) is to pick a component with the most ac-
cessibility. In other words, depending on the design re-
quirements, the designer could pick the component with
the most exposed surface area. In our implementation,
the component with the largest exposed area is chosen
®rst.
However, other heuristics also may be used instead of

or in conjunction with the above accessibility test to im-
prove results for a given disassembly scenario. Here are
two examples of such rules:

(1) Pick a component according to its relative size to
other components. For instance, it may be more conve-
nient for a factory ¯oor worker to disassemble all smaller
components ®rst before starting to remove larger bulkier

Fig. 13. Flowchart for the DD algorithm presented in Section
5.2. Gray boxes signify the places where heuristic rules can be
utilized for e�ciency.

966 Lee and Gadh



parts. In disassembling a car, for instance, the engine and
all the other accessories such as seats and wheels are re-
moved ®rst before the chassis is taken apart. Therefore, a
heuristic rule designed to pick the component with the
smallest volume ®rst can be implemented to optimize the
solution;

(2) Pick a component according to its relative weight to
other components. Disassembling lighter parts ®rst is
usually regarded as easier than removing heavier parts
®rst. For example, if the worker wants to remove a
compartment, it may be prudent to remove the shelf
panels or drawers, if they exist, ®rst.

The above examples indicate that the decision as to
which rules to use depends signi®cantly on the user
requirements.

The purpose of step 2 is to ensure that the assembly
consists of the to-be-disassembled component and the rest
of the assembly, labeled as RCG. In the sample assembly
shown in Fig. 14, assume that C1, the component with the
largest exposed surface, is chosen to be disassembled ®rst.
Therefore, according to the current de®nition, C2 is RCG.

5.2.3. Disassembly step 3. Identify all STISj between C1

and RCG

In this step, all TIS that might restrict disassembly be-
tween C1 and RCG are determined. To determine the
TISj/TISj� pairs (STISj ), the following algorithm is used:
all surfaces that are in contact with a surface belonging to
another component are considered to be a TIS. Fur-
thermore, any two TIS in contact, each belonging to a
di�erent component, are grouped as an STISj and labeled
TISj and TISj�, where TISj� belongs to RCG and TISj to
C1. This is similar to the SIS illustrated in Fig. 2.
Therefore, in Fig. 14, fTIS1, TIS2, TIS3, TIS4, TIS5,
TIS6, TIS7g 2 C1.

5.2.4. Disassembly step 4. Identi®cation of all possible
TIS to be removed from C1 to allow disassembly

For all STIS� found in step 3, the SDSj� of C1 with res-
pect to RCG are determined. A table of all SDSj� of C1

due to the TISj� on RCG for the example in Fig. 14 is
shown in Fig. 15.
From the list of SDSj� determined in this step, one by

one, each SDSj� is intersected with another SDSj� and the
``AND(\)'' Boolean operation is performed to ®nd the
resultant SDR of C1. The order of intersection is deter-
mined according to the following sub-steps:

(1) At the beginning of the disassembly procedure,
where no ``cutting'' has yet been performed on the com-
ponent C1, an arbitrary TISj� on the RCG is selected. In
the example assembly from Fig. 14, any one of TIS1�,
TIS2�, TIS3�, TIS4�, TIS5�, TIS6� or TIS7� qualify;
(2) If the assembly has been processed through the DD

algorithm and thus has had one or more ``cuts'' executed,
the TISj� adjacent to the last cutting position is selected;
(3) The resultant SDSj� on C1 due to the selected TISj�

is intersected with the SDS� due to one of its neighboring
TIS, say, TISj�1�. This intersection of the two SDS,
fSDSj� \ SDSj�1�g, results in a new cumulative SDR.
Then the other neighboring surface to TISj�, the TISjÿ1�,
is picked and its SDS, SDSjÿ1� is intersected with the new
cumulative SDR � fSDSj� \ SDSj�1�g. The resultant
SDR � fSDSj� \ SDSj�1� \ SDSjÿ1�g. Then the next two
neighboring TIS, TISj�2� and TISjÿ2�, are selected and
the SDS due to these, SDSj�2� and SDSjÿ2�, are inter-
sected one by one with the corresponding cumulative
SDR from the previous step. The order according to
which the current TIS is selected:

TISj�;TISj�1�;TISjÿ1�;TISj�2�;TISjÿ2�; . . . ;TISM�;TIS1:

Accordingly, the AND Boolean operation is performed
with SDS in the following order:

SDSj� \ SDSj�1� \ SDSjÿ1�; . . . ;\ SDSM� \ SDS1�:

This sequence is continued until there are no more
neighboring surfaces in any direction (when the selected
TISj� is either TISM� or TIS1�) or the intersection of SDS�
due to the latest TIS� selected with the latest cumulative
SDR is an empty set. Then, the TISj on C1 that corres-
ponds to the latest TISj� selected is one of the desired
surfaces for potential removal; it is called the ``blocking
surface'' (BS).

Fig. 14. Example assembly to be used in Section 5.2.
Fig. 15. Table of SDSj� of C1 due to the TISj� on RCG from
the example of Fig. 14.

Destructive disassembly to support virtual prototyping 967



This entire procedure, step 4, is repeated using each
TISj� as the starting point. Depending on the shape of the
assembly, one or more blocking surfaces are found in this
manner and for each, steps 5 through 6 are exercised. For
the example assembly, Fig. 16 shows the resultant SDR
as each of the SDS are intersected with the cumulative
SDR one by one, until the ®rst blocking surface, TIS5, is
found. This is the result when Step 4 is executed on the
example using TIS1� as the starting point.

5.2.5. Disassembly step 5. Plan cutting positions on the
component C1 for eliminating the identi®ed blocking
surface in step 4

In this step a cutting position is determined such that the
BS identi®ed in step 4 can be removed from the rest of
C1. (For brevity, step 4 was not demonstrated using all of
its TIS as the starting point. Thus, more than one BS may
exist.) In the example above, it has been determined that
TIS5 is the ®rst blocking surface. Therefore, a cutting
operation is needed to remove TIS5 from the rest of the
TIS on C1. Since it has already been determined in step 4
that there exists a resultant direction of disassembly with
respect to TIS1±TIS4, a cutting position that severs TIS5

from TIS1±TIS4 is su�cient. This placement guarantees
that the portion of the component C1 that contains TIS

1±
TIS4 will be disassemblable after the cutting operation. In
other words, the core algorithm of step 5 is to remove the
blocking surface found from step 4 such that at least a
partial disassembly is possible.

The method for determining the cutting location is as
follows: The cutting plane (represented as a line, in the
2-D example) is placed on component C1 such that the
cutting plane intersects the edge (represented as a point,
in the 2-D example) shared by the blocking surface, TIS5,
and its neighboring surface, TIS4, whose corresponding
SDS has already been checked. Then the cutting plane is
made su�ciently large so that when the cut is executed,
the blocking surface is removed from the component C1.
Here, RCG is not cut. The only limitation is that creating
the cutting plane with real cutting tools must be physi-
cally possible. A cutting plane with the smallest area,
however, is desired for e�ciency.

This is the second place where heuristic rules are
applied to help in ®nding more acceptable solutions

according to the given user requirements. For example,
the disassembly goal used in the current DD approach is
to achieve disassembly with the least number of cuts.
Therefore, by keeping track of the total number of cuts
needed to disassemble a given C1 completely using a
given TISj� as a starting point, a TIS can be identi®ed
that requires the least number of cuts to disassemble the
given component C1: This particular TIS then becomes
the ®rst TIS to be removed from C1. Another possible
heuristic is that the system keeps track of how many
components may be non-destructively removed when a
particular TIS found from step 4 is cut away. In other
words, if cutting a TISj� leads to more disassembled
components than the ones created by cutting some other
TIS, then cutting that TISj� is the solution that the sys-
tem will choose. Again depending on the end-user re-
quirement, the heuristics may vary and a number of the
rules can be combined for better results. In our imple-
mentation, only the ``fewest number of cuts'' is employed
as the guiding heuristic.
In addition to this heuristic another heuristic could

determine the shape and the direction of the cutting
plane. A simple rule, minimize the size of the area of
cutting plane, is applied. Figure 17 shows the proposed
location and direction of the cutting plane that satis®es
this heuristic rule.

5.2.6. Disassembly step 6. Perform the cutting operation
and disassemble

The actual ``destruction'' of a part via a planar cut is
performed. The cut is made along the planned cutting
surface from step 5. Figure 18 shows the components C1,
C2, and the newly created component C3 after the cutting
operation. The disassembly direction for component C1

after it is cut is also shown. In the current algorithm, the

Fig. 16. Resultant SDS as the SDS j* are intersected one by
one. TIS5 therefore is one of the blocking surfaces that need to
be removed.

Fig. 17. Proposed cutting position for removing TIS5; from
component A.

968 Lee and Gadh



cut is always initiated on C1, the component that is
chosen to be disassembled ®rst. After the cutting opera-
tion, the old C1 is no longer a part of the assembly and
also, some new components are created. Therefore, after
each cutting operation, when C1 or a section thereof has
been successfully removed, the rest of the components,
RCG and the remainder of the old C1, if any, have to be
renumbered before the next iteration of DD can be per-
formed.

5.2.7. Disassembly step 7. Check if the assembly has been
completely disassembled

If the remaining assembly consists of only one compo-
nent, the disassembly operation is completed. If not, steps
1±6, are repeated with the remaining assembly, RCG and
the part that has been cut o� from the removed compo-
nent C1, until the disassembly is complete.

The example assembly in Fig. 18 still consists of two
components. Therefore, steps 1±6 are again executed on
this assembly. Step 1 determines that C3 is disassemblable
in a non-destructive fashion and that the number of re-
maining components after that disassembly is just one.
Now, the disassembly operation is complete.

5.3. Complexity analysis

The complexity of the algorithm can be measured in two
ways:

1. Local complexity: this measures the complexity of
a single loop of the current DD algorithm. In other
words, this is the complexity for ®nding a blocking sur-
face and subsequently, removing it from the rest of the
assembly;

2. Global complexity: this measures the complexity of
the overall disassembly algorithm.

It must be noted that since the algorithm makes use of
several heuristic rules, the worst case complexity is often
not encountered.

5.3.1. Local complexity break down

Given an assembly of N components with j TIS each, the
computational complexity of the DD algorithm presented
in this paper can be broken down as follows:

Step 1 relies on the complexity of an existing N-DD
algorithm. According to Ashai and Gadh [1] the com-
plexity is O�N2�;
Steps 2, 5 and 6 rely on simple heuristics and thus the

complexity is linear: O(N);
Step 3 is of O(j) and step 4 is of O�N�j2�

Therefore, the overall complexity of the single loop of the
current DD algorithm is O�N2 � Nj2�.
5.3.2. Global complexity break down

The overall complexity of the algorithm has a linear re-
lationship to the number of identi®ed blocking surfaces
(BS); O(Nj). The algorithm will ®nd a BS, cut/remove it
from the assembly. Then it will attempt to ®nd the next
BS until the disassembly is complete.

6. Implementation

The algorithm presented in this paper is implemented
using a solid modeling package called ACISTM . The
built-in data structure and the tools to manipulate them
make this package an ideal choice for implementing the
algorithm. Section 6 discusses how the various aspects of
the DD algorithm are being tied into the ACIS package.
In section 6.2, some example screen shots are shown as
they appear on the solid modeler.

6.1. The DD algorithm implementation in ACIS

6.1.1. Topology

To represent the topology of the components in an as-
sembly, a so-called ``cellular topology'' data structure is
used. A cell is a generic entity within which another
geometric entity can be attached. For example, a simple
cube can become a single cell. In the current implemen-
tation, a single component in an assembly is represented
as a cell.
Cells also have provisions for user-de®nable attributes.

Any information regarding the entity that belongs to a
cell can be stored and called upon. For example, the color
of the component can be stored. This ability to store user-
de®ned attributes to each cell is used to store all the
necessary information pertaining to a component while

Fig. 18. The example components after the ®rst cutting oper-
ation.

Destructive disassembly to support virtual prototyping 969



the disassembly is being performed. An example of an
attribute is the Gaussian sphere for a given component
which is stored in a cell.

With the built-in functions for cell manipulations, sev-
eral cells can be used to form a new cell. Therefore, a
multiple-component assembly can bemodeled as one large
cell consisting of several sub-cells. Then each sub-cell can
in return represent other sub-cells or a single component.

6.1.2. Geometry manipulation

Several standard API functions for manipulating the
geometric entity in a cell are provided. Examples are
Boolean operator functions and those for creating solids
and surfaces. An important function is the ``slice''-func-
tion. This API function can be used to cut a given geo-
metric entity with another. For example, a cube can be
sliced by a plane. This operation results in two new
geometric entities which are attached to each other
through a common surface. Using this function, the
cutting operations required to modify a given component
in the DD algorithm is simulated. For the current ap-
proach, a given component is sliced using a planar surface
which results in two newly created components. To each
of the new components, a cellular topology is assigned.

6.1.3. Limitations

Some limitations related to the implementation are:

(1) Due to the planar nature of the cutting operation,
all curved surfaces are faceted. ACIS allows for varying
degrees of facets. Therefore, by increasing the number of
the faces that simulate a curved surface, the desired pre-
cision can be achieved. However, this has the potential to
signi®cantly increase the number of TIS that also have to
be analyzed;

(2) Currently, only a single plane is used for a cutting
operation. Whilst this is adequate for components with
relatively simple BS, complex BS may require more than
a single planar cut to be separated from the rest of the
component. This is a topic for future research.

6.2. Examples

Some 3-D screens from ACIS are shown in Figs. 19±23.
The model is the 3-D version of Fig. 14. Using the es-
tablished convention, the bottom component in Fig. 19 is
labeled as RCG and the top component as C1. Figure 19
is the assembly before the DD analysis. Figures 20±23 are
three of the possible unique solutions determined by the
system. Note that due to the symmetric nature of this
model in 3-D space, many more equivalent solutions can
be generated. However by using heuristics, equivalent
(and therefore redundant) solutions are ®ltered out.

The solution as shown in Fig. 20 is achieved by cutting
TIS2 as the BS from Fig. 14. This one cut is su�cient to
achieve the total disassembly of C1 and RCG.

Fig. 19. ACIS screen of an example two-component assembly
(before DD analysis).

Fig. 20. Example assembly after one BS was cut. (The BS
corresponds to the TIS2 from Fig. 14).

Fig. 21. Example assembly after a di�erent BS was cut. (The
BS corresponds to the surface parallel to the part in Fig. 14).

970 Lee and Gadh



The solution as shown in Fig. 21 is achieved by cutting
the surface parallel to the paper as the BS from Fig. 14.
Again, this one cut is su�cient to achieve the complete
disassembly of C1 and RCG.

The solution as shown in Fig. 22 is achieved by cutting
TIS5 as the BS from Fig. 14. This time, this one cut is not
su�cient to achieve the total disassembly of C1 and RCG.
After removing the top portion of C1 as shown in Fig. 22,
a portion of C1 is still interlocked with the RCG.
Therefore, an additional cut, as shown in Fig. 23 is
necessary to achieve complete disassembly. Therefore,
according to the heuristic used in the current implemen-
tation, the algorithm will favor solutions from Figs. 20
and 21 over Figs. 22 and 23.

7. Summary

In this paper, a new methodology in design-for-disas-
sembly has been presented. Until now, most research in
DFD has been based on non-destructive approaches to
®nding disassembly sequences of assembled products.
These approaches have inherent limitations in the num-
ber of solutions they can provide. By using the destructive
method discussed in this paper, an entirely di�erent set of
solutions for disassembly can be determined.
One of the main bene®ts of the current approach is that

by allowing the assembly to be modi®ed through cutting,
the designers have more ¯exibility in DFD in general.
Another bene®t is that the algorithm is solely based on
the geometry. The algorithm can thus be used on broader
classes of mechanical assemblies.
The drawback of this approach is that it signi®cantly

increases the number of possible solutions since theoret-
ically, an in®nite number of cuts can be made on a given
component. Heuristic rules are introduced to reduce the
number of possible solutions generated by the algorithm
to a more manageable number.
Although further research and implementation are

needed on the methodology presented in this paper, it
nevertheless identi®es, and lays a framework for, a new
set of useful DFD solutions as applied to virtual proto-
typing. Further research into re®ning some of the rules
used in the algorithm and re®ning the search algorithm
itself will make the current method more e�cient.

References

[1] Ashai, Z. and Gadh, R. (1994) Computer-aided design-for-disas-
sembly: a non-destructive approach. Technical report UW-Mad-
ison, Mechanical Engineering Department.

[2] Ishii, K. (1993) Life-cycle clumping of product designs for own-
ership and retirement, in Design Theory and Methodology, DE
Vol. 53, ASME, New York, pp. 83±90.

[3] Woo, T.C. (1987) Automatic disassembly and total ordering in
three dimensions, in PED Vol. 25. ASME, New York, pp. 291±
303.

[4] Sedas, S.W. and Talukdar, S.N. (1987) Disassembly planner for
redesign, in PED Vol. 25. ASME, New York, pp. 95±100.

[5] Subramani, A.K. and Dewhurst, P. (1991) Automatic generation
of product disassembly sequences. CIRP Annals, 40 115±118.

[6] Mattikalli, R.S. and Khosla, P.K. (1992) Motion constraints from
contact geometry: representation and analysis, in Proceedings ±
IEEE International Conference on Robotics and Automation Vol. 3.
IEEE, Piscataway, NJ, USA pp. 2178±2185.

[7] Xu, Y., Mattikalli, R.S. and Khosla, P.K. (1995) Generation of
partial medial axis for disassembly motion planning. Journal of
Design and Manufacturing 5, 89±102.

[8] Dutta, D. and Woo, A. (1992) Algorithms for multiple disas-
sembly and parallel assemblies, in Concurrent Engineering ± 1992
PED Vol. 59, ASME, New York, pp. 257±266.

[9] Boothroyd, G. (1987) Design for assembly in action. Assembly
Engineering 30, 64±68.

[10] Boothroyd, G. and Alting, L. (1992) Design for assembly and
disassembly. CIRP Annals, 41, 625±636.

Fig. 22. Example assembly after yet another BS was cut. (The
BS corresponds to the TIS5 from Fig. 14). The disassembly is
not yet complete.

Fig. 23. The remainder of the C1 from Fig. 22 has been disas-
sembled by cutting another BS.

Destructive disassembly to support virtual prototyping 971



[11] Gadh, R., Hjalmarsson, H. and Prinz, F.B. (1992) On the recog-
nition and classi®cation of shape features using MANU-Facture,
in Issues in Design/Manufacture Integration ± 1991, DE-Vol. 39,
ASME, New York, pp. 53±58.

[12] Nussbaum, B. and Templeman, J. (1990) Built to last ± until it is
time to take apart. Business Week, Sept. 17, McGraw-Hill, Inc.

Biographies

Kyonghun Lee is a graduate student at the University of Wisconsin-
Madison pursuing his M.S./Ph.D. degree in Mechanical Engineering as
a member of the I-CARVE Lab. His research interests are on CAD/
CAM, solid modeling as applied to Design-For-Disassembly and in-
terment-based CAD. He received his BSE in Mechanical Engineering
at University of Michigan ± Ann Arbor.

Dr. Rajit Gadh, has been an Assistant Professor of Mechanical En-
gineering and Director of the I-CARVE Lab (http://icarve.me.wisc.
edu) at the University of Wisconsin since 1992. He is an active
researcher in the areas of virtual design, feature extraction from CAD,
and virtual disassembly. He received his Ph.D. in Mechanical Engi-
neering in 1991 from Carnegie Mellon University and his MS in 1986
from Cornell University. He is the recipient of the Society of Auto-
motive Engineers' Ralph R. Teetor Educational award for 1993, the
Eastman Kodak-ASME best technical paper award for his paper on
Features-assisted Design at the American Society of Mechanical En-
gineers (ASME) Design Automation Conference, September 1993. In
1995, he received the prestigious NSF Career Award and in 1996 he
received the Lucent Technologies Ecology Fellowship. Email:
gadh@me.engr.wisc.edu

972 Lee and Gadh


